Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ:



АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ - - раздел математической статистики , предназначенный для анализа  связей между тремя и более переменными. Можно условно выделить три основных класса  задач А.М.С. Это исследование  структуры связей между переменными и снижение размерности пространства признаков, построение классификаций и типологий, исследование причинных связей. Для представления структуры связей между переменными обычно используется матрица корреляций  . Ее анализ, заключающийся в выделении подмножеств переменных, тесно коррелирующих друг с другом, может осуществляться "вручную", например, с помощью графа, отражающего наиболее существенные связи между переменными, либо методами компьютерного анализа, такими, как метод главных компонент,  факторный анализ,  кластерный анализ  переменных. Анализ структуры связей часто рассматривается в качестве самостоятельной задачи,  например, при исследовании структуры ценностей, мотивов и т.п., для проверки психометрических шкал на надежность  и в других случаях. Однако он может использоваться и в качестве промежуточного этапа при решении задачи снижения размерности пространства признаков. Снижение размерности обычно применяется для построения пространства, более удобного для решения задач классификации и исследования причинных связей, чем исходный набор переменных. Задача снижения размерности заключается в том, чтобы от большого количества исходных переменных перейти к нескольким обобщенным показателям. Метод  главных компонент , анализ факторный  , метод многомерного шкалирования  предусматривают для этого разнообразные процедуры. Задачи и методы классификации,  в зависимости от условий, делятся на три группы: классификация  по заданным формальным критериям, автоматическая классификация и классификация с обучением. Классификация по заданным критериям, строго говоря, не является статистическим методом. Она состоит в группировке объектов по одному или нескольким показателям. В последнем случае классификация называется перекрестной или лингвистической (например, половозрастная структура  населения). Автоматическую классификацию применяют в тех случаях, когда критерии группировки неизвестны и отсутствуют априорные представления о количестве и характере классов. Для ее построения используются методы анализа кластерного , позволяющие выделить группы объектов, близких друг к другу по значениям измеренных переменных. В основе кластерного анализа лежит вычисление расстояний между объектами. Классификация с обучением применяется, когда критерии классификации неизвестны, но известно количество классов и их типологические особенности. В этом случае может быть сформирована так называемая выборка обучающая  , состоящая из реальных объектов, обладающих соответствующими характеристиками, или/и искусственных объектов - моделей "типичных представителей" классов. В обучающей выборке должны присутствовать "представители" всех предполагаемых классов. Классификация конкретного объекта  состоит в том, что вычисляется расстояние между ним и объектами из обучающей выборки и объект причисляется к тому классу, расстояние до которого для него оказалось минимальным. Классификация с обучением осуществляется некоторыми методами кластерного и дискриминантного анализа. Анализу статистических причинных связей в последние годы уделяется особое внимание. Классическим методом для решения таких задач является дисперсионный анализ,  в основе которого лежит эксперимент факторный   (не путать с анализом факторным - ). Начиная с 1960-х активно разрабатываются регрессионные и регрессионно-подобные причинные модели ( Каузальное моделирование) , а также техники, позволяющие использовать в этих моделях не только "количественные", но и "качественные" переменные ( Dummy-кодирование). В настоящее время  для исследования причинных связей, в зависимости от характера используемых переменных, применяются методы множественной линейной регрессии, логистической регрессии, дискриминантного анализа и т.п. Эти методы предполагают наличие единственной зависимой переменной и не позволяют исследовать структуру связей между независимыми переменными (предикторами). Структура связей между предикторами может быть учтена в моделях анализа путевого . Наиболее общим является метод линейных структурных уравнений , позволяющий строить сложные модели с большим числом взаимодействующих между собой зависимых и независимых переменных, среди которых могут быть не только наблюдаемые, но и латентные признаки. Регрессионный, дисперсионный, путевой и факторный анализ являются его частными случаями. О.В. Терещенко
Похожие на АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ слова / понятия:

АНАЛИЗ ПРИБЫЛИ И ИЗДЕРЖЕК
АНАЛИЗ ПРИЧИННЫЙ
АНАЛИЗ ПУТЕВОЙ
АНАЛИЗ РАЗГОВОРА (CONVERSATION ANALYSIS)
АНАЛИЗ РЕГРЕССИОННЫЙ
АНАЛИЗ РЕГРЕССИОННЫЙ КАЧЕСТ­ВЕННЫЙ
АНАЛИЗ СИСТЕМНЫЙ
АНАЛИЗ СОБЫТИЙНЫЙ
АНАЛИЗ СОЦИАЛЬНЫХ СЕТЕЙ
АНАЛИЗ СТРУКТУРНО-ФУНКЦИОНАЛЬНЫЙ