Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

АНАЛИЗ КОВАРИАЦИОННЫЙ:



АНАЛИЗ КОВАРИАЦИОННЫЙ - – сово­купность методов математич. статистики, отно­сящихся к анализу  моделей зависимости среднего значения нек-рой случайной величины Y от набора неколичественных факторов F и одновременно от набора количественных факторов X. По отношению к Y переменные X наз. сопутствую­щими; факторы  F задают сочетания условий качественной природы, при к-рых получены на­блюдения Y и X, и описываются с помощью т.н. индикаторных переменных; среди сопутствую­щих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте) ; если случайная величина   у является вектором (см.), то говорят г, «ил... ном А.к. Основные теоретич. и прикладные пробле­мы А.к. относятся к линейным моделям В частности, если анализируются п наблюдений Y2,...,Yn с р сопутствующими переменными (х = (х(1), ..., х(р))), k возможными типами усло­вий эксперимента (F = (f1, … , fk)), то линейная модель  соответствующего А.к. задается уравне­нием: , где i=1,…, n, индикаторные переменные fij равны 1, если j-e условие эксперимента имело место при наблюдении Yi, и равны 0 в ином слу­чае. (fij) могут соответствовать рез-там дихотомизации номинального признака F с градация­ми f1,..., fk (см. Признак); номинальный же при­знак  может быть сложным: каждой его града­ции может отвечать сочетание значений нек-рых первичных, напр, взятых из анкеты, признаков; коэффициенты  Θj определяют эффект  влияния j-ro условия;  – значение  сопутствующей пе­ременной x(s), при к-ром получено наблюдение  Yi, i=1,..., n; s=1,…, Р; βs(fi) – значения соответствующих коэффициентов регрессии Y по x(s) (см. Анализ регрессионный;  Корреляция) , вообще говоря, зависящие от конкретного соче­тания условий эксперимента, т. е. от вектора  fi=(fi1,…fiz); εj(fi) – случайные ошибки,  имею­щие нулевые средние значения. Основное назначение А.к. – использование в построении статистич. оценок (см. Оценивание статистическое) Θ1,…,Θk; β1,…,βp и стати­стич. критериев для проверки различных гипотез относительно значений этих параметров. Если в модели (1) постулировать априори β1=…=βp=0, то получится модель анализа дисперсионного (см.); если из (1) исключить влияние  неколиче­ственных факторов (положить Θ1=…=Θk=0), то получится модель анализа регрессионного (см.). Своим названием А.к. обязан тому обстоятельст­ву, что в его вычислениях используются разбие­ния ковариации (см. Показатели   корреляции) величин Y и X точно так же, как в дисперсион­ном анализе используются разбиения суммы квадратов отклонений Y. Лит.: Кендалл М.Дж., Стьюарт А. Многомерный  статистический анализ и временные ряды. М., 1976; Шеффе Г. Дисперсионный анализ.  М., 1980. С.А. Айвазян
Похожие на АНАЛИЗ КОВАРИАЦИОННЫЙ слова / понятия:

АНАЛИЗ ЛАТЕНТНО-СТРУКТУРНЫЙ
АНАЛИЗ ЛОГЛИНЕЙНЫЙ
АНАЛИЗ МНОГОМЕРНЫЙ
АНАЛИЗ МНОГОМЕРНЫЙ СТАТИСТИЧЕСКИЙ
АНАЛИЗ ПРИБЫЛИ И ИЗДЕРЖЕК
АНАЛИЗ ПРИЧИННЫЙ
АНАЛИЗ ПУТЕВОЙ
АНАЛИЗ РАЗГОВОРА (CONVERSATION ANALYSIS)
АНАЛИЗ РЕГРЕССИОННЫЙ
АНАЛИЗ РЕГРЕССИОННЫЙ КАЧЕСТ­ВЕННЫЙ