Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Независимость:



Независимость - (в логике и математике)  — невыводимость предложения некоторой теории из данного множества ее предло­жений, напр. из системы ее аксиом. Система аксиом называется независимой (неизбыточной), если каждая входящая в нее аксиома невыводима из других аксиом. Если какую-то аксиому можно вывести из остальных, ее можно исключить из списка ак­сиом, при этом исходная теория не изменится, класс доказуемых в ней предложений останется тем же.   Зависимая система аксиом содержит лишние аксиомы и в этом смысле является менее совершенной, чем независимая. Требование Н. распространяется и на правила вывода аксиоматической теории. Исходное правило вывода независимо, если оно не может быть получено в качестве производного правила в системе, из которой оно исключено. Можно также сказать, что аксиома или правило вывода независимы, если существует теоре­ма, которая не может быть доказана без этой аксиомы или этого правила вывода. Н. имеет по преимуществу эстетическую и дидактическую цен­ность. Исследование Н. способствует, как правило, лучшему по­ниманию строения изучаемой теории и ее возможностей. Исторически первым доказательством Н. было доказательство невыводимости пятого постулата Евклида о параллельных из ос­тальных его постулатов. Требование Н. может быть распространено не только на аксиомы и правила вывода аксиоматических теорий, но и на исходные их термины (понятия). Термин независим, если он неопределим через остальные исходные термины. Теория с неизбыточным исходным словарем не содержит лишних понятий и является в этом отноше­нии более совершенной, чем теория с зависимыми понятиями. Зависимость некоторой аксиомы от остальных показывается путем вывода ее из них. Н. аксиомы можно доказать, найдя свой­ство, присущее всем другим аксиомам и не присущее рассматри­ваемой.
Похожие на Независимость слова / понятия:

Номологическое Высказывание
Норма
Нормальное Множество
Нормативная Логика
Нормативная Модальность
Нормативное Высказывание
Объединение (Сложение) Классов (Множеств)
Объективность
Объектный (Предметный) Язык
Объяснение