Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Модель:



Модель - (от лат. modulus — мера, образец, норма)  — а) в самом широком смысле — любой мысленный или знаковый образ модели­руемого объекта (оригинала). К их числу относятся гносеологиче­ские образы (воспроизведение, отображение исследуемого объек­та или системы объектов в виде научных описаний, теорий, фор­мул, систем упражнений и т. п.), схемы, чертежи, графики, планы, карты и т. д.; б) специально создаваемый или специально подби­раемый объект, воспроизводящий характеристики изучаемого объекта. Большую роль в современной науке играют т.наз. знако­вые М., позволяющие в виде формул, уравнений, графиков и т. п. отображать существенные отношения между изучаемыми предме­тами, явлениями, различные процессы. Пример знаковой М. — дифференциальное уравнение в математике, описывающее (мо­делирующее) протекание во времени к.-л. физического процесса. Знаковые М. широко используются в информатике при создании соответствующих программ для ЭВМ; к их числу принадлежат М., воспроизводящие решение сложных задач, специфических для деятельности человеческого мозга и имеющих творческий характер (М., относимые в информатике к искусственному ин­теллекту). Между М. и изучаемым объектом (оригиналом), кото­рый может представлять собой весьма сложную систему, должно существовать сходство в каких-то физических характеристиках, или в структуре, или в функциях (см.: Моделирование). В математической логике под М. понимается интерпретация к.-л. логико-математических предложений и их систем. В разрабатыва­емой в математической логике теории М. под М. понимается про­извольное множество элементов с определенными на нем функ­циями и предикатами (см.: Семантика логическая). Понятие М. яв­ляется одним из центральных и сложных понятий теории познания, поскольку оно опирается на понятие отражения, истины, сход- ства, различия, правдоподобия и т. п.; роль его в методологии науки огромна.
Похожие на Модель слова / понятия:

Модель Семантическая
Модус
Модус Понендо Толленс
Модус Поненс
Модус Толлендо Поненс
Модус Толленс
Мышление
Наука
Не Вытекает, Не Следует
Нечеткое Множество