Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Логика Предикатов:



Логика Предикатов - или: Функциональная логика, теория квантификации, кванторная логика,  - основ­ной раздел современной (математической, символической) логики, в котором описываются выводы, учитывающие внутреннюю (субъектно-предикатную) структуру высказываний. Л. п. является расши­ренным вариантом логики высказываний. В Л. п. — в дополнение к средствам логики высказываний -вводятся логические операторы" («для всех») и $ («для некото­рых» или «существует»), называемые кванторами общности и существования соответственно. Для выявления субъектно-пре­дикатной структуры высказываний вводится бесконечный пере-   чень индивидных переменных: х, у, z, ..., х1, у1, zl, ..., представляющих различные объекты, и бесконечный перечень предикатных переменных: Р, Q, R, ..., Р1, Q1, Л1, ..., представляющих свойства и отношения объектов. Индивидные переменные принимают значения в произвольной (непустой) области; наряду с этими переменными могут вводиться инди­видные константы, или имена собственные. Запись ("х)Р (х) означает «Всякий х обладает свойством Р»; ($х)Р(х) - «Некоторые х обладают свойством Р»; ($x)Q(xy) - «Су­ществует х, находящийся в отношении Q с у» и т. п. Индивидная переменная, входящая в область действия квантора по этой пере­менной, называется связанной; переменная, не являющаяся связанной, называется свободной. Так, во всех трех приведен­ных формулах переменная х связана, в последней формуле пере­менная у свободна. Подлинной переменной является только сво­бодная переменная: вместо нее можно подставить одно из ее значений и получить осмысленное выражение. Связанные пере­менные называются фиктивными. Формула Л. п. называется общезначимой, если она истинна в каждой интерпретации. Тавтология логики высказываний явля­ется частным случаем общезначимой формулы. В Л. п., в отличие от логики высказываний, нет эффективного процесса, позволя­ющего для произвольно взятой формулы решить, является она общезначимой или нет. Для Л. п. доказан ряд важных теорем, характеризующих ее ос­новные свойства (см.: Непротиворечивость, Полнота, Разрешимость теории).
Похожие на Логика Предикатов слова / понятия:

Логика Традиционная
Логика Времени
Логика Высказываний
Лжеца Парадокс
Математическая Логика
Материальная Суппозиция
Метафора
Метаязык
Метаматематика
Метатеория