Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Интуиционизм:



Интуиционизм -  - направление в обосновании математики и логики, согласно которому конечным критерием приемлемости методов и результатов этих наук является наглядно-содержатель­ная интуиция. Вся математика должна опираться, согласно И., на интуитивное представление ряда натуральных чисел и на прин­цип математической индукции, истолковываемый как требование действовать последовательно, шаг за шагом; допускаются лишь конструктивные доказательства существования рассматриваемого объекта, указывающие способ его построения. Создателем И. является голландский математик Л. Э. Я. Брауэр (1881 — 1966). В начале XX в. он выдвинул программу радикальной перестройки математики, противопоставив ее концепции сведе­ния математики к логике (см.: Логицизм) и истолкованию мате­матики исключительно как языка математических символов (см.: Формализм). Представители И. полагают, что чистая математика является мыслительной активностью, не зависящей от языка, ее объект -нелингвистические математические конструкции. Язык служит лишь для сообщения математических идей, математика не сво­дится к языку и тем более не может быть истолкована как особый язык. Предметом исследования (математической) логики являет­ся математический язык, более или менее адекватно передающий математические построения. Логика вторична по отношению к ма­тематике, последняя не может быть обоснована с помощью логи­ческих средств. Основной тезис интуиционистов гласит, что существование в математике — это то же самое, что конструктивность, или «построяемость». Из существования математического объекта вытека­ет его непротиворечивость, но не наоборот: не каждый непроти­воречивый объект существует. Построение является единственным средством обоснования в математике. Интуиционисты подвергли резкой критике закон исключенного третьего, закон (снятия) двойного отрицания и ряд других зако­нов логики классической. Согласно Брауэру, логические законы не являются абсолютными истинами, не зависящими от того, к чему они прилагаются. Закон исключенного третьего, верный в случае конечной математики, неприменим в рассуждениях о бесконечных множествах. Объекты бесконечного множества невозможно пере­брать. Если в процессе перебора не удалось найти элемент с требу­емым свойством, ни утверждение о существовании такого объекта, ни отрицание этого утверждения не является истинным. Критика И. классической логики привела к созданию нового направления в логике — интуиционистской логики. Одновременно с Брауэром сомнения в универсальной прило­жимости закона исключенного третьего высказал рус. философ и логик Н. А. Васильев (1880-1940). Он ставил своей задачей постро­ение такой системы логики, в которой была бы ограничена не только сфера действия этого закона, но и непротиворечия закона. Казавшиеся парадоксальными, идеи Васильева не были в свое время оценены по достоинству.
Похожие на Интуиционизм слова / понятия:

Интуитивная Логика
Иррациональное
Исчисление
Искусственный Интеллект
Истина
Истинностное Значение
Ясность
Язык
Язык Логики
Язык Науки