Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Индукция:



Индукция - (от лат. inductio - наведение)  - умозаключение, в котором связь посылок и заключения не опирается на логиче­ский закон, в силу чего заключение вытекает из принятых посы­лок не с логической необходимостью, а только с некоторой веро­ятностью. И. может давать из истинных посылок ложное заключение; ее заключение может содержать информацию, отсутствующую в посылках. И. противопоставляется дедукция - умозаключение, в котором связь посылок и заключения опирается на закон логики и в котором заключение с логической необходимостью следует из посылок. Два примера индуктивных умозаключений: Енисей течет с юга на север; Лена течет с юга на север; Обь и Иртыш текут с юга на север. Енисей, Лена, Обь, Иртыш — крупные реки Сибири. Все крупные реки Сибири текут с юга на север. Железо - металл; медь - металл; калий - металл; кальций - металл; рутений — металл; уран — металл. Железо, медь, калий, кальций, рутений, уран — химические элементы. Все химические элементы — металлы. Посылки обоих этих умозаключений истинны, но заключение первого истинно, а второго ложно. Понятие дедукции (дедуктивного умозаключения) не является вполне ясным. И. (индуктивное умозаключение) определяется, в сущности, как «недедукция» и представляет собой еще менее яс­ное понятие. Можно темные менее указать относительно твердое «ядро» индуктивных способов рассуждения. В него входят, в част­ности, неполная И., индуктивные методы установления причин­ных связей, аналогия, т.наз. «перевернутые» законы логики и др. Неполная И. представляет собой рассуждение, имеющее следу­ющую структуру: S1 есть Р, S2 есть Р, ............. Sn есть Р Все S1, S2,..., Sn есть S. Все S есть Р. Посылки данного рассуждения говорят о том, что предметам S1, S2,..., Sn, не исчерпывающим всех предметов класса S, присущ при­знак Р и что все перечисленные предметы S1, S2, ..., Sn принадлежат классу S. В заключении утверждается, что все S имеют признак Р. Напр.: Железо ковко. Золото ковко. Свинец ковок. Железо, золото и свинец — металлы. Все металлы ковки. Здесь из знания лишь некоторых предметов класса металлов дела­ется общий вывод, относящийся ко всем предметам этого класса. Индуктивные обобщения широко применяются в эмпириче­ской аргументации. Их убедительность зависит от числа приводи-   мых в подтверждение случаев. Чем обширнее база индукции, тем более правдоподобным является индуктивное заключение. Но иног­да и при достаточно большом числе подтверждений индуктивное обобщение оказывается все-таки ошибочным. Напр.: Алюминий — твердое тело. Железо, медь, цинк, серебро, платина, золото, никель, барий, калий, свинец — твердые тела. Алюминий, железо, медь, цинк, серебро, платина, золото, ни­кель, барий, калий, свинец — металлы. Все металлы — твердые тела. Все посылки этого умозаключения истинны, но его общее зак­лючение ложно, поскольку ртуть — единственная из металлов — жидкость. Поспешное обобщение, т. е. обобщение без достаточных на то оснований, — обычная ошибка в индуктивных умозаключениях и, соответственно, в индуктивной аргументации. Индуктивные обобщения всегда требуют известной осмотрительности и осто­рожности. Их убедительная сила невелика, особенно если база индукции незначительна («Софокл — драматург; Шекспир -драматург; Софокл и Шекспир — люди; следовательно, каж­дый человек — драматург»). Индуктивные обобщения хороши как средство поиска предположений (гипотез), но не как сред­ство подтверждения каких-то предположений и аргументации в их поддержку. Начало систематическому изучению И. было положено в нача­ле XVII в. Ф. Бэконом. Уже он весьма скептически относился к неполной И., опирающейся на простое перечисление подтвер­ждающих примеров. Этой «детской вещи» Бэкон противопоставлял описанные им особые индуктивные принципы установления причинных связей. Он даже полагал, что предлагаемый им индуктивный путь откры­тия знаний, являющийся очень простой, чуть ли не механической процедурой, «почти уравнивает дарования и мало что оставляет их превосходству...». Продолжая его мысль, можно сказать, что он на­деялся едва ли не на создание особой «индуктивной машины». Вводя в такого рода вычислительную машину все предложения, относящиеся к наблюдениям, мы получали бы на выходе точную систему законов, объясняющих эти наблюдения. Программа Бэкона была, разумеется, чистой утопией. Никакая «индуктивная машина», перерабатывающая факты в новые зако- ны и теории, невозможна. И., ведущая от единичных утвержде­ний к общим, дает только вероятное, а не достоверное знание. Высказывалось предположение, что все «перевернутые» законы логики могут быть отнесены к схемам индуктивного умозаключения. Под «перевернутыми» законами имеются в виду формулы, получае­мые из имеющих форму импликации (условного утверждения) за­конов логики путем перемены мест основания и следствия. К приме­ру, поскольку выражение «Если р и q, то р» есть закон логики, то выражение «Если р, то р и q» есть схема индуктивного умозаключе­ния. Аналогично для «Если р, то р или q» и «Если р или q, то р» и т. п. Сходно для законов модальной логики: поскольку выражения «Если р, то возможно р» и «Если необходимо р, то р» - законы логики, выражения «Если возможно р, то р» и «Если р, то необходимо р» являются схемами индуктивного рассуждения и т. п. Законов логики бесконечно много. Это означает, что и схем индуктивного рассужде­ния (индуктивной аргументации) бесконечное число. Предположение, что «перевернутые» законы логики представля­ют собой схемы индуктивного рассуждения, наталкивается на серь­езные возражения: некоторые «перевернутые» законы остаются зако­нами дедуктивной логики; ряд «перевернутых» законов, при истолко­вании их как схем И., звучит весьма парадоксально. «Перевернутые» законы логики не исчерпывают, конечно, всех возможных схем
Похожие на Индукция слова / понятия:

Индукция Математическая, Полная Математическая Индукция
Индукция Неполная
Индукция Полная
Индукция Популярная
Индуктивная Логика
Индуктивное Определение
Интенсионал И Экстенсионал
Интерпретация
Интерсубъективный
Интуиция