Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Имя:



Имя -  - выражение естественного или искусственного, форма­лизованного языка, обозначающее отдельный предмет, совокуп­ность сходных предметов, свойства, отношения и т. п. Напр., слово «Наполеон» обозначает отдельный предмет - Наполеона Бонапар­та; слово «полководец» обозначает класс людей, каждый из которых командовал войсками в сражениях; слово «белый» можно рассмат­ривать как обозначение свойства белизны; слово «выше» — как обозначение определенного отношения между предметами. Объект, обозначаемый И., называется денотатом этого И.; со­держание И., т. е. способ, которым оно указывает на свой денотат, называется смыслом И. В традиционной логике понятиям «дено­тат» и «смысл» соответствуют понятия объема и содержа­ния. Между И. и его денотатом имеется отношение именования, т. е. И. называет, именует свой денотат. При построении логических систем стремятся к тому, чтобы отношение именования удовлет­воряло трем следующим принципам.   1.Принцип однозначности: И. должно иметь только один денотат, т. е. обозначать только один предмет, класс предметов или свойство. Принцип однозначности в естественных языках часто нарушается из-за многозначности и неопределенности слов и вы­ражений. Однако следует стремиться к тому, чтобы по крайней мере в пределах одного контекста или одного рассуждения наши слова и выражения относились к одним и тем же объектам. В про­тивном случае неизбежны логические ошибки. 2. Принцип предметности: всякое предложение говорит о денотатах входящих в него выражений. Напр., предложение «Ураль­ские горы разделяют Европу и Азию» говорит не об именах «Ураль­ские горы», «Европа», «Азия», а о той горной цепи, которая разде­ляет Европейский и Азиатский материки. Принцип предметности кажется достаточно очевидным, однако, когда мы начинаем гово­рить о самих языковых выражениях или о математических объек­тах, может произойти смешение И. с их денотатами. 3. Принцип взаимозаменимости: если два И. имеют один и тот же денотат, то одно из них можно заменить другим, причем предложение, в котором осуществляется такая замена, не изменяет своего истинностного значения. Напр., И. «Москва» и «столица России» имеют один и тот же денотат, поэтому в предло­жении «Москва — многомиллионный город» можно И. «Москва» заменить И. «столица России»: «Столица России — многомилли­онный город». Второе предложение остается истинным. Принцип взаимозаменимости называют также принципом экстенсиональности (объемности), т. к. он служит для отличения экстенсиональных контекстов от интенси­ональных. Экстенсиональным наз. такой контекст, для которо­го важны только денотаты языковых выражений. Поэтому принцип взаимозаменимости в таком контексте выполняется: при замене И. с одним денотатом предложение сохраняет свое истинностное значение. Однако если для контекста важен не только денотат, но и смысл И., принцип взаимозаменимости нарушается: заме­на И. с одним денотатом может сделать истинное предложение ложным. Поэтому неэкстенсиональными, или интенсиональны­ми, наз. контексты, в которых принцип взаимозаменимости на­рушается. Напр., цифра «9» и И. «число планет Солнечной систе­мы» имеют один и тот же денотат (т. к. число планет Солнечной системы равно 9). Рассмотрим предложение: «9 необходимо боль­ше 7». Это предложение истинно. Заменим теперь в этом предло­жении «9» именем «число планет Солнечной системы», получим предложение: «Число планет Солнечной системы необходимо боль- ше 7». Последнее предложение очевидно ложно, т. к. нет никакой необходимости в том, чтобы число планет Солнечной системы превосходило 7. В зависимости от характера денотата и смысла И. подразделя­ются на классы. Единичное (собственное) И. - И., денотатом которого яв­ляется один-единственный предмет, напр. «Аристотель», «Монб­лан», «Нева», «величайший философ древности», «река, на которой стоит Ленинград» и т. п. Общее И. — И., денотатом которого является класс однород­ных предметов, напр. «философ», «гора», «река» и т. п. Пустое И. — И., у которого отсутствует денотат, т. е. не суще­ствует такого предмета, который обозначается данным И., напр. «единорог», «Зевс», «русалка», «кентавр» и т. п. Вопрос о пустоте или непустоте того или иного И. часто имеет большое значение, и на него не всегда просто ответить. Имеются логически противоре­чивые И., смысл которых включает в себя логически несовмести­мые признаки, напр. «круглый квадрат», «деревянное железо». Та­кие И. можно назвать логически пустыми. Однако существование женщин с рыбьим хвостом или существ, объединяющих в себе коня и человека, не противоречит законам логики, но с точки зрения физики и биологии невозможно. Поэтому И. «русалка» и «кентавр» пусты по естественнонаучным основаниям. Во многих случаях мы не знаем законов природы, отрицающих существова­ние тех или иных объектов, поэтому вопрос о пустоте или непус­тоте соответствующих И. решается эмпирическим исследованием. Конкретное И. -И., обозначающее отдельный предмет, вещь, в противоположность абстрактному И., обозначающему свой­ство или отношение между предметами. Напр., слово «стол» — кон­кретное И., т. к. обозначает предметы, целостные вещи, а слово «белизна» является абстрактным И., поскольку обозначает не пред­мет, а свойство предметов. Деление И. на конкретные и абстрактные осуществляется в рамках традиционной логики и не является вполне определенным. Во многих случаях довольно трудно решить, имеем ли мы дело с предметом или с некоторым свойством. Напр., такие слова, как «республика», «совесть» и т. п., можно истолковать и как обозначения предметов, и как обозначения свойств и отношений.
Похожие на Имя слова / понятия:

Импликация
Импликация Материальная -
Индивид
Индукции Каноны
Индукция
Индукция Математическая, Полная Математическая Индукция
Индукция Неполная
Индукция Полная
Индукция Популярная
Индуктивная Логика