Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Закон Клавия:



Закон Клавия -  — логический закон, характеризующий связь импликации («если, то») и отрицания. Его можно передать так: если из отрицания некоторого высказывания вытекает само это высказывание, то оно является истинным. Или короче: высказы­вание, вытекающее из своего собственного отрицания, истинно. Иначе говоря: если необходимым условием ложности некоторого высказывания является его истинность, то это высказывание ис­тинно. Напр., если условием того, чтобы машина не работала, является ее работа, то машина работает. Закон назван именем Клавия — ученого иезуита, жившего в XVI в., одного из создателей григорианского календаря. Клавий обратил внимание на этот закон в своем комментарии к «Нача­лам» Евклида. Одну из своих теорем Евклид доказал из допуще­ния, что она является ложной. С использованием символики логической (р — некоторое выска­зывание; -> - условная связь, «если, то»; ~ - отрицание, «невер­но, что») 3. К. представляется формулой: (~р->р)->р, если не-р имплицирует р, то верно р. 3. К. лежит в основе рекомендации, касающейся доказательства: если хочешь доказать А, выводи A из допущения, что верным яв­ляется не-А. Напр., нужно доказать утверждение «Трапеция имеет четыре стороны». Отрицание этого утверждения: «Неверно, что трапеция имеет четыре стороны». Если из этого отрицания удает­ся вывести утверждение, то последнее будет истинно. Эту схему рассуждения использовал однажды древнегреческий философ Демокрит в споре с софистом Протагором, который ут- верждал: «Истинно все то, что к.-л. приходит в голову». На это Демокрит ответил, что из положения «Каждое высказывание ис­тинно» вытекает истинность и его отрицания: «Не все высказыва­ния истинны». И, значит, это отрицание, а не положение Прота-гора на самом деле истинно. 3. К. является одним из случаев общей схемы косвенного доказа­тельства: из отрицания утверждения выводится само это утвер­ждение, вместе с отрицанием оно составляет логическое проти­воречие; это означает, что отрицание ложно, а верным является само утверждение. К 3. К. близок по своей структуре другой логический закон, от­вечающий этой же общей схеме: если из утверждения вытекает его отрицание, то последнее истинно. Напр., если условием того, что поезд прибудет вовремя, будет его опоздание, то поезд опоздает. Иначе говоря: если необходимым условием истинности некоторого утвер­ждения является его ложность, то утверждение ложно. Символически: (p->~p)->~p, если р имплицирует не-р, то верно не-р. Данный закон представ­ляет собой схему рассуждения, идущего от некоторого утвержде­ния к его отрицанию. Можно сказать, что он в некотором смысле слабее, чем З.К., представляющий рассуждение, идущее от отри­цания утверждения к самому утверждению. В частности, оба эти закона имеют место в логике классической, но 3. К. не принимается в интуиционистской логике.
Похожие на Закон Клавия слова / понятия:

Закон Коммутации
Закон Коммутативности
Закон Композиции
Закон Косвенного Доказательства
Закон Логики
Закон Мышления -
Закон Противоречия
Значение
Знак
Знание