Поиск:
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я


Статьи

Словари:

Архитектурный словарь
Бизнес словарь
Биографический словарь
Исторический словарь
Медицинский словарь
Морской словарь
Политический словарь
Психологический словарь
Религиозный словарь
Сексологический словарь
Словарь воровского жаргона
Словарь имён
Словарь компьютерного жаргона
Словарь логики
Словарь мер и весов
Словарь нумизмата
Словарь Русских фамилий
Словарь символов
Словарь синонимов
Социологический словарь
Строительный словарь
Философский словарь
Финансовый словарь
Экономический словарь
Этнографический словарь
Юридический словарь



Словарь логики

Доказательство:



Доказательство -  — рассуждение, устанавливающее истин­ность к.-л. утверждения путем приведения других утверждений, истинность которых уже доказана. В Д. различаются тезис - ут­верждение, которое нужно доказать, и основание, или ар­гументы, — те утверждения, с помощью которых доказывается тезис. Напр., тезис «Платина проводит электрический ток» мож­но доказать с помощью следующих истинных утверждений: «Пла­тина — металл» и «Все металлы проводят электрический ток». Понятие Д.— одно из центральных в логике и математике, но оно не имеет однозначного определения, применимого во всех случаях и в любых научных теориях. Логика не претендует на полное раскрытие интуитивного, или «наивного», понятия Д. Д. образует довольно расплывчатую сово­купность, которую невозможно охватить одним универсальным определением. В логике принято говорить не о доказуемости вооб­ще, а о доказуемости в рамках данной конкретной системы или теории. При этом допускается существование разных понятий Д., относящихся к разным системам. Напр., Д. в интуиционистской логике и опирающейся на нее математике существенно отличает­ся от Д. в логике классической и основывающейся на ней математи­ке. В классическом Д. можно использовать, в частности, закон исклю­ченного третьего, закон (снятия) двойного отрицания и ряд других логических законов, отсутствующих в интуиционистской логике. По способу проведения Д. делятся на два вида. При прямом Д. задача состоит в том, чтобы найти такие убедительные аргумен­ты, из которых логически вытекает тезис. Косвенное Д. устанавли­вает справедливость тезиса тем, что вскрывает ошибочность про­тивоположного ему допущения, антитезиса. Задача Д. — исчерпывающе утвердить истинность тезиса. Этим оно отличается от других мыслительных процедур, призванных только частично поддержать тезис, придать ему большую или мень­шую убедительность. Нередко в понятие Д. вкладывается более широкий смысл: оно понимается как любой способ обоснования истинности тезиса. Расширительное толкование Д. обычно используется в социальных науках и рассуждениях, непосредственно опирающихся на наблю­дения; в процессе обучения, где для подтверждения выдвинутого положения активно привлекаются эмпирический материал, ста­тистические данные, ссылки на типичные в определенном отно­шении явления и т. п. Придание термину «Д.» широкого смысла не ведет к недоразу­мениям, если учитывается, что обобщение, переход от частных факторов к общим заключениям дает не достоверное, а лишь ве­роятное знание. Определение Д. включает два центральных понятия логики: по­нятие истины и понятие логического следования. Оба эти понятия не являются в достаточной мере ясными, и, значит, определяемое через них понятие Д. также не может быть отнесено к ясным. Многие утверждения не являются ни истинными, ни ложны­ми, лежат вне «категории истины». Оценки, нормы, советы, дек­ларации, клятвы, обещания и т. п. не описывают каких-то ситуа­ций, а указывают, какими они должны быть, в каком направлении их нужно преобразовать. От описаний требуется, чтобы они соот­ветствовали действительности и являлись истинными. Удачный совет, приказ и т. п. характеризуется как эффективный или целе­сообразный, но не как истинный. Высказывание «Вода кипит» истинно, если вода действительно кипит; команда же «Вскипяти­те воду!» может быть целесообразной, но не имеет отношения к истине. Очевидно, что, оперируя выражениями, не имеющими истинностного значения, можно и нужно быть и логичным и до­казательным. Встает, таким образом, вопрос о существенном рас­ширении понятия Д., определяемого в терминах истины. Им дол­жны охватываться не только описания, но и утверждения типа оценок или норм. Задача переопределения Д. пока не решена ни логикой оценок, ни деонтической (нормативной.) логикой. Это де­лает понятие Д. не вполне ясным по своему смыслу. Не существует, далее, единого понятия логического следова­ния. Логических систем, претендующих на определение этого по­нятия, в принципе существует бесконечно много. Ни одно из име­ющихся в современной логике определений логического закона и логического следования не свободно от критики и от того, что принято называть «парадоксами логического следования». Образцом Д., которому в той или иной мере стремятся следо­вать во всех науках, является математическое Д. Долгое время счи- талось, что оно представляет собой ясный и бесспорный про­цесс. В нашем веке отношение к математическому Д. изменилось. Сами математики разбились на враждующие группировки, каж­дая из которых придерживается своего истолкования Д. Причи­ной этого послужило, прежде всего, изменение представления о лежащих в основе Д. логических принципах. Исчезла уверенность в их единственности и непогрешимости. Логицизм был убежден, что логики достаточно для обоснования всей математики; по мнению формалистов (Д. Гильберт и др.), одной лишь логики для этого недостаточно и логические аксиомы необходимо до­полнить собственно математическими; представители теорети­ко-множественного направления не особенно интересовались логическими принципами и не всегда указывали их в явном виде; интуиционисты из принципиальных соображений считали нуж­ным вообще не вдаваться в логику. Полемика по поводу матема­тического Д. показала, что нет критериев Д., не зависящих ни от времени, ни от того, что требуется доказать, ни от тех, кто ис­пользует критерий. Математическое Д. является парадигмой Д. вообще, но даже в математике Д. не является абсолютным и окон­чательным.
Похожие на Доказательство слова / понятия:

Доказательство Конструктивное
Доказательство От Противного
Доказательство По Случаям
Доказуемость
Дополнение К Множеству
Достаточное Условие
Достаточного Основания Принцип
Достоверность
Двойного Отрицания Закон
Двузначная Логика